Systematic Risk, Debt Maturity, and the Term Structure of Credit Spreads
by Chen, Xu & Yang

Harjoat S. Bhamra

Imperial & UBC

2013
Outline

- Aim
- Why do we care?
- Model Summary & Results
- Comments
Paper’s aim:

- How do liquidity and market risk interact with firms’ management of debt maturity to affect credit spreads
 - Time series: focus on impact of business cycle
 - Cross section: focus on impact of systematic risk exposure
- Key features
 - Leland-type model
 - Aggregate risk: 2-state Markov chain
 - Firms issue (finite-maturity) debt and rollover a constant fraction: depends on aggregate state
 - Exogenous, unpriced liq. shocks directly decrease debt prices, not equity
 - Optimally select
 - Face value of debt
 - Debt maturity
 - Default time
Firms which have a suboptimal maturity structure may reduce liabilities in bad times by firing people.

Would like to understand impact of debt maturity management on:

- Financial variables:
 - prices, spreads, returns, risk premia, volatility, correlation, etc
- Real variables:
 - real investment
 - production
 - employment
 - household welfare

Choice of maturity structure affects financial variables and can feed into real economy, affecting welfare.

This paper focuses solely on financial side.

Most interesting question: how much can maturity management help firms reduce the impact of a crisis episode on credit risk?
Model Summary

- cross-section of firms
- typical firm’s cash flow dynamics

\[
\frac{dy}{y} = \hat{\mu}(s_t)dt + \sigma_{\Lambda}(s_t)\, dZ^\Lambda + \sigma_f(s_t)\, dZ^f
\]

- exogenous SDF, \(\Lambda \): jumps up when \(\hat{\mu} \) is lower
- exogenous liquidity costs: effectively increasing discount rate for corporate bonds. This discount rate is increasing in maturity and higher in bad states.

 - part of cashflow used to pay a constant coupon: choose this coupon
 - default on debt when \(y \) falls below some value \(y_D(s_t) \): choose this level for each state
 - debt is rolled over cts’ly at a rate dependent on \(s_t \): choose this rate for each state

 - benefit of higher maturity is lower default rate
 - cost of higher maturity is lower debt value because of liquidity discount
Implications

- Average maturity will be shorter in bad states: driven by much higher liquidity costs in bad states
- High beta firms will choose longer maturity debt – liquidity costs impact them less, leading to less variation in maturity over the business cycle
- Crisis risk management: a firm can avoid a huge increase in credit spreads by issuing longer-term debt and maintaining long average maturity over time.
Suggestions: more on crisis management

Explore more fully the impact of suboptimal v optimal maturity choice on
- firm value (cross-sectional average and total value across firms) – quantify loss in value stemming from suboptimality
- equity value
- equity risk premium
- the liquidity component of credit spreads
Suggestions: derivatives

- Usage of derivatives is huge
- How would modelling this change implications?
Comments: theory

Posited (exogenous) SDF inconsistent with liquidity shocks

- Non-diversifiable liquidity shocks make markets incomplete
- Need to assume illiquid assets are a very small part of individual investors portfolios to use SDF
Conclusion

- Paper focuses on financial implications of managing market and liquidity risk via maturity choice
- We really care about the real implications

Cumulative output loss = 37% of pre-crisis GDP