Arbitrage-Free Bond Pricing
With Dynamic Macroeconomic Models
Discussant: Harjoat S. Bhamra, UBC

Michael F. Gallmeyer Burton Hollifield

Francisco Palomino Stanley E. Zin

November 2007
The Bigger Picture

- There is interaction between
 1. Monetary Policy
 2. Real Economy
 3. Asset Prices

- Some research has focused on Monetary Policy and the Real Economy (Woodford, sticky price/wage models)
Asset Prices and Monetary Policy

• What about Asset Prices?
• When should Monetary Policy take Asset Prices into consideration?
 - Greenspan and asset price bubbles, Bernanke and the credit crisis
• If Monetary Policy does take Asset Prices into account, what are the real effects? What are the effects on Portfolio Choices and Asset Prices?
• Large research agenda: needs some focus!
What This Paper Does

- Makes inflation a consequence of monetary policy
- How is it done?
 1. Assumption about monetary policy
 - Nominal interest rate (nominal yield on 1 year bond) follows a Taylor Rule
 \[i_t = -\ln b_t^{1,$} = f(\text{real cons growth, cons growth vol, } p_t, \text{Exog Shocks}) \]
 2. Introduce a real SDF (\(m_t \))
 - Find the price level which makes nominal interest rate consistent with no-arbitrage
- Real SDF is not exogenous as in standard term structure models
 - Real SDF comes from representative agent’s preferences and exogenous real consumption (Lucas)
Questions We Can Answer With This Paper’s Model

- Can ask how the following affect inflation and the nominal yield curve:
 - Changing f (Taylor Rule)
 - Changing the rep agent’s preferences
 - Statistical assumptions about real consumption growth
Issues Beyond The Model

- Can households and a monetary policy setting agent be aggregated into a rep agent?
- Monetary policy has no real implications: real consumption is exogenous
 - Impossible to assess welfare implications of monetary policy (see Palomino (2007))
- The only way monetary policy affects nominal yields is via inflation
How Does Inflation Affect Nominal Bond Prices?

• Price of a nominal bond
 • Date-t price of a bond which pays out one dollar at date $t+n$

$$b_{t}^{n,\$} = b_{t}^{n} E_t[P_t/P_{t+n}] \left[1 + \text{Cov}_t \left(\frac{m_t/m_{t+n}}{E_t[m_{t+n}/m_t]}, \frac{P_t/P_{t+n}}{E_t[P_t/P_{t+n}]} \right) \right]$$

• $p_t = \ln P_t$, $m_t = P_t m_\$$

• Expected inflation

• Covariance of inflation with real SDF- Inflation Risk Premium
The Model Framework: **Endogenous Inflation Model**

- **Taylor Rule**
 \[i_t = -\ln b_t^1, \quad b_t^1 = f(x_t, \text{cons growth vol, } p_t, \text{Exog Shocks}) \]

 But
 \[b_t^1 = b_t E_t[P_t/P_{t+1}] \left[1 + \text{Cov}_t \left(\frac{m_t/m_{t+1}}{E_t[m_{t+1}/m_t]}, \frac{P_t/P_{t+1}}{E_t[P_t/P_{t+1}]} \right) \right] \]

- Inflation is now endogenous!
Consumption Growth

- Consumption growth $x_{t+1} = c_{t+1}/c_t$ is mean-reverting with stochastic vol ν_t

$$x_{t+1} = (1 - \phi_x)\theta_x + \phi_x x_t + \nu_t^{1/2}\epsilon_{t+1}^x$$

$$\nu_{t+1} = (1 - \phi_v)\theta_v + \phi_v \nu_t + \sigma_v \epsilon_{t+1}^v$$
Representative Agent

- Real SDF (m) comes from a representative agent with Epstein-Zin preferences
 - RRA, γ
 - EIS, ψ
- Agent cares about path of future consumption: continuation utility normalized by its CEQ enters the SDF

$$m_{t+1} = \beta x_{t+1}^{1/\psi} \left(\frac{U_{t+1}}{CEQ_t(U_t)} \right)^{1/\psi-\gamma}$$

$$u(CEQ_t(U_{t+1})) = E_t(u(U_{t+1})),$$

where

$$u(x) = \frac{x^{1-\gamma}}{1-\gamma}$$
Exogenous Monetary Policy & Endogenous Inflation

• Monetary policy is chosen exogenously (Taylor Rule)

\[i_t = -\ln b_t^1 = \bar{\tau} + \tau_x x_t + \tau_p p_t + s_t \]

• Exogenous \(s_t \), AR(1), orthogonal to shocks driving \(x_t \) and \(v_t \)
• Obtain endogenous inflation

\[p_t = \bar{\pi} + \pi_x x_t + \pi_v v_t + \pi_s s_t \]
What Does Endogenizing Inflation Buy Us?

- **Exogenous inflation**
 - The exogenous inflation process in the paper does not covary with real SDF → zero inflation risk premium → downward sloping nominal term structure
 \[
 b_t^n \Delta = b_t^n E_t[P_t/P_{t+n}]
 \]

- **Endogenous inflation**
 - Endogenous inflation process in the paper does covary with real SDF → non-zero inflation risk premium → upward sloping nominal term structure & more volatility at long end
 \[
 b_t^n \Delta = b_t^n E_t[P_t/P_{t+n}] \left[1 + \text{Cov}_t \left(\frac{m_t/m_{t+n}}{E_t[m_{t+n}/m_t]}, \frac{P_t/P_{t+n}}{E_t[P_t/P_{t+n}]} \right) \right]
 \]
Exogenous v Endogenous Inflation

- Could just set exogenous inflation equal to the endogenously derived inflation process and obtain identical nominal term structure (upward sloping and with more volatility at long end)

- But, can ask following questions:
 - How does choice of monetary policy affect inflation and nominal term structure?
 - How do EIS and RRA affect inflation and nominal term structure?
 - How does the stochastic vol assumption affect inflation and nominal term structure
How Does Monetary Policy Affect Inflation and Nominal Yield Curve?

- Taylor Rule

 \[i_t = -\ln b_t^1 = \bar{\tau} + \tau_x x_t + \tau_p p_t + s_t \]

- Exogenous \(s_t \), AR(1), orthogonal to shocks driving \(x_t \) and \(v_t \)

- Implied inflation

 \[p_t = \bar{\pi} + \pi_x x_t + \pi_v v_t + \pi_s s_t \]

- Making nominal rate more sensitive to output growth (larger \(\tau_x \)) \(\rightarrow \) inflation more sensitive to stochastic vol (larger \(\pi_v \)) \(\rightarrow \) nominal yield curve shifted down and more upward sloping & higher nominal yield volatility

- Making nominal rate more sensitive to price level (larger \(\tau_p \)) \(\rightarrow \) inflation more sensitive to output growth (larger \(\pi_x \)), less sensitive to stochastic vol (smaller \(\pi_v \)) \(\rightarrow \) nominal yield curve shifted down and more upward sloping \(\rightarrow \) higher nominal yield volatility \(\rightarrow \) nominal yield curve shifted down and less upward sloping & less nominal yield volatility
Intuition

• More intuition for Taylor \rightarrow Implied inflation
• Existing intuition: Implied Inflation \rightarrow nominal SPD \rightarrow nominal yield curve

\[b_t^n, \$ = b_t^n E_t[P_t/P_{t+n}] \left[1 + \text{Cov}_t \left(\frac{m_t/m_{t+n}}{E_t[m_{t+n}/m_t]}, \frac{P_t/P_{t+n}}{E_t[P_t/P_{t+n}]} \right) \right] \]

• Add extra step: Implied Inflation \rightarrow nominal SPD \rightarrow inflation risk premium \rightarrow nominal yield curve
How Does EIS Affect Inflation and Nominal Yield Curve?

- This has **both** real and nominal effects!
- **Real effects**
 - Higher EIS → less demand for long-term bonds, higher real long-term yields → real term structure less downward sloping & Δ of real yields wrt output growth is lower → less volatile real long-term yields [But higher EIS → lower real risk-free rate (Weil)?]
- **Nominal effects**
 - Higher EIS → more upwards sloping nominal term structure % more volatile nominal long-term yields more demand for bonds, lower long-term yields
Questions/Comments

- Stochastic vol seems very important to get upwards sloping nominal term structure.
- Would be instructive to see model without stochastic vol in consumption growth.
- For the same parameters that generate reasonable nominal term structure dynamics, can you get a reasonable equity risk premium?
- Link autocovariance of nominal SDF to term structure of inflation risk premium.
- How different are the statistical properties of implied inflation from data?
- Can you classify the family of monetary policy rules that gives realistic implied inflation?
Extensions

- With existing model, look at
 - Equity Risk Premium
 - Bond Options and their Greeks (see how they respond to macro factors and Taylor Rule)
 - Corporate Bonds: how does monetary policy affect risk-neutral default probabilities?