Do Open-market Share Repurchases Supply or Demand Immediacy?

Discussion

Harjoat S. Bhamra

Imperial College Business School

26 July 2018

Aims

• A market microstructure paper

• What is the impact of open market share repurchases on market immediacy?

Why do we care?

 Market immediacy is the ability or the speed with which transactions can be executed promptly at the prevailing price

 Lack of immediacy – less stable prices – greater return volatility – higher cost of capital

Challenges

- How can we measure immediacy?
- Causality if stock repurchases are related to a measure of immediacy, how can we show that stock repurchases impact immediacy?

Outline of Paper

- Data: all open-market share repurchase programs executed in the Helsinki Stock Exchange between January 1, 1999 and December 31, 2009.
 - on average 27 programs per year
 - median size of EUR 5.7 million
- Construct a measure for the predicted return from providing immediacy: PR_{IMM}
 - Main idea: interpret trading profits from contrarian trading strategies as returns from providing liquidity. Returns from providing liquidity correspond with the returns from providing immediacy in Grossman and Miller (1988).
- Regress repurchases/volume against PR_{IMM}

$$(1) \quad \frac{\text{repurchases}}{\text{volume}}_{i,t} = \alpha + \beta PR_{IMM,i,t-1} + \sum_{n=1}^{N} \gamma_n \text{control}_{n,i,t} + \epsilon_{i,t}$$

• Also against $PosPR_{IMM} = max(PR_{IMM}, 0)$ (immediacy provision) and $NegPR_{IMM} = -min(PR_{IMM}, 0)$ (immediacy demand)

PRIMM

- How is *PR*_{IMM} calculated?
- a stock's predicted excess return evaluated using past estimates of market level pattern of short-term return reversals and the stock's past daily excess returns.

(2)
$$\underbrace{R_{5,t}}_{\text{excess return from } t \text{ to } t+5} = \alpha_t + \sum_{\tau=0}^{9} \beta_{t-\tau} \underbrace{R_{i,t-\tau}}_{\text{daily excess return}} + \boldsymbol{\beta}_{t,C}^{\top} \boldsymbol{C}_{i,t} + \epsilon_t$$

 Calculate 120 - day moving averages of the coefficients based on cross-sectional regressions (above). Multiply by relevant observation and sum up to create predicted excess return.

Table 2. The pattern of return reversal

This table shows the average coefficients of $\hat{\beta}_{l-\tau}$, from daily cross-sectional regressions of Equation (1) in which stock's 5-day future excess returns RS_t are regressed on each of the stock's past ten days' excess returns $R_{-\tau}$, where $\tau \in \{0, \dots, 9\}$, and controls $\ln(Volume)_kR_{l,0}$, $\ln(Market Capitalization)_kR_{l,0}$, and $\ln(RR_{l,0})$. First two controls are constructed by multiplying the past 10-day excess returns with either the stock's past 10-day (log of) trading volume or the stock's (log of) market capitalization at day t, and $RP_{l,0}$ is the maximum of the value of repurchases during the past 10 days and 16. The excess returns are calculated relative to equal-weighted market index. t-statistics based on Fama-Macbeth standard errors are shown next to the coefficients in parentheses. Here ***, *** or * are used to denote figures that are statistically significantly different from zero at 19t, 5% or 10% level.

	R5t	t-stat	
\mathbf{R}_{t}	-0.247	(-14.58)	***
R_{t-1}	-0.157	(-9.13)	***
R_{t-2}	-0.122	(-7.43)	***
R_{t-3}	-0.095	(-5.79)	***
R_{t-4}	-0.081	(-4.97)	***
R_{t-5}	-0.073	(-4.54)	***
R_{t-6}	-0.066	(-4.07)	***
R ₁₋₇	-0.054	(-3.32)	***
R_{t-8}	-0.049	(-3.03)	***
R _{t-9}	-0.043	(-2.65)	***
$ln(RP_{10})^1$	0.115	(3.43)	***
ln(Volume)xR _{5,t-9}	0.017	(21.33)	***
ln(Market Capitalization)xR _{t,t-9}	-0.011	(-9.19)	***
Intercept	-0.001	(-15.46)	***
Number of daily regressions	2,997		
Average number of observations	160		
Average R ²	0.209		

¹ Coefficient multiplied by 103

Snapshot of Results

• β around 3

(3)
$$\frac{\text{repurchases}}{\text{volume}}_{i,t} = \alpha + \beta PR_{IMM,i,t-1} + \sum_{n=1}^{N} \gamma_n \text{control}_{n,i,t} + \epsilon_{i,t}$$

- β around 10, $PosPR_{IMM}$, immediacy provision
- β around 4, NegPR_{IMM}, immediacy demand

Measuring immediacy – other ways?

• With more data could you use a theoretical measure from Chacko, Jurek, Stafford (2008)?

(4)
$$\underline{p(Q)} \approx \sigma \sqrt{\frac{Q}{2\lambda}}$$

- Estimate, σ , volatility of fundamental returns on whole sample
- Q is observed quantity traded
- λ rate of opposing order flow can it be observed?
- compute p(Q)

How does immediacy vary over time?

- Can you investigate how measures of immediacy (supply and demand) vary over time?
- covariation with business cycle?
- covariation with daily realized excess returns?

Summary

- Clean, well executed paper
- Explore alternative measures of immediacy
- Exploit existing measures more fully links to economic and financial variables